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S U M M A R Y  
Lebon-Lambermont's variational principle is used to solve some problems of unsteady heat conduction in semi- 
infinite solids. These are characterized by temperature dependent heat conductivity and heat capacity. Two kinds of 
boundary conditions are applied : prescribed temperature history and prescribed heat flux across the surface. This latter 
problem is investigated by means of the technique proposed by Lardner and Rafalski-Zyszkowsky. The results are 
compared with exact ones, when available, or with those obtained from other variational principles like Blot's and 
Vuianovic's. In all cases, agreement is very satisfactory. 

1. Introduction 

In absence of heat sources, the equation of conduction of heat in an isotropic body is expressed, 
in cartesian coordinates, by 

0T~,  
c T  

c is the heat capacity per unit volume, k the heat conductivity, T the temperature while an 
upper dot stands for 0/&; the summation convention on repeated indices will be used through- 
out this paper. In most problems of practical interest, the thermal properties c and k do vary 
with the temperature so that (1.1) is a non-linear partial differential equation. Exact solutions 
may be obtained in some particular cases [1-3]. More frequently, variational methods or 
direct numerical methods, like the finite difference technique are used. 

In the last years, there has been a considerable growth of interest in formulating variational 
principles. As is well known, dissipative phenomena cannot be described by exact variational 
criteria but rather by restricted principles [4]. These differ from the classical ones by the fact 
that some variables are frozen during the process of variation. Most of these criteria are for- 
mulated in the framework of thermodynamics of irreversible processes. 

One of the best known is the principle of Glansdorff and Prigogine [5-7]. It states that a 
certain functional, the local potential, is extremum: 

6d?(v, T, p . . . . .  vo, r o, p0, ...) = 0.  (1.2) 

The local potential q5 depends on two types of variables : the velocity v, the temperature T, the 
pressure p, etc., which are submitted to variation and alias variables of the same kind v ~ T ~ 
p0 . . . .  which are kept constant during variation. However, in order to recover the correct 
conservation laws as Euler-Lagrange equations, the alias quantities are to be identified with 
the variables v, T, p . . . .  after the process of variation is completed. This criterion has been 
applied successfully to many problems of heat transfer and fluid mechanics [8-11]. 

Another approach, particularly suited in heat transfer and related problems like thermo- 
elasticity and diffusion has been proposed by Biot [12], [13]. It has the form of a restricted 
principle wherein the quantity to be varied is the heat displacement vector H, defined as the 
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time integral of the heat flux vector J. For heat conduction, Biot's criterion may be written as 
follows : 

+ ~ 6H, dV= 0 (1.3) 

with the law of conservation of energy 

cT - aHi (1.4) 
0xi 

introduced as a holonomic constraint. Expressing the beat displacement in terms of generalized 
coordinates q~ and substituting in (1.3) leads to an equation of Lagrangian form 

0V 0D 
~q~ + ~ = Q~ ~ = 1 . . . . .  n ,  (1.5) 

which may be easier to solve than the original heat equation (1.1). The quantities V, D and Q, 
are respectively the thermal potential, the dissipation function and the generalized thermal 
force; they are well defined functions of T and H. Several heat conduction problems have been 
solved using this method, see for instance ref. [14] and [15]. 

More recently, Vujanovic and his collaborators [16], [17] presented another variational 
formulation. Because this theory has given raise to very much interest in the latest years, we 
shall analyse it in more detail. 

There exists no variational principle for the heat conduction equation (1.1). Moreover, this 
expression, which is parabolic, implies that a thermal disturbance must propagate with an 
infinite speed. To avoid this unpleasant feature, (1.1) has often [18], [19] been replaced by the 
hyperbolic equation 

~2T 
c z T + c T =  k 0x~--? ' (c, k = constants), (1.6) 

where z is the relaxation time. 
It has been shown by Vujanovic that there exists an exact variational principle for equation 

(1.6); this criterion is given by 

c \cOxi) ] e'/* dtdV = 0 (c, k = constants). (1.7) 

The corresponding Lagrange equation is nothing but (1.6) multiplied by the factor e t/~. Now, 
in order to recover equation (1.1) by using (1.7), Vujanovic observes the following rules : at the 
end of the variational procedure, he drops the factor e '/~ and afterwards, he takes the limit z~0 .  

Vujanovic extended his theory to non-linear heat conduction [20] and  to isothermal boun- 
dary layer flows [21], [22]. This was done by introducing an alias function O(x, t, 2) depending 
on an arbitrary parameter 2 and obeying the conditions: 

l i m 0 ( x , t ,  2 ) = 0 ,  l i m O f f ( x ' t ' 2 ) -  1, l i m 0 0 ( x ' t ' 2 ) -  1. (1.8) 
~-0 ~-0 0x ~ 0  Ot 

In our opinion, this theory presents, however, some important shortcomings. 
1. The whole procedure rests on the property that equation (1.6) reduces to (1.1) when r ~ 0 .  
This is certainly not true a priori because the solution of (1.6) depends explicitly on z. Therefore, 
for each problem, one has to make certain that (1.6) reduces effectively to (1.1) either by solving 
(1.6) or by using a method like the singular perturbation technique. 
2. It is not sure that  the function 0 defined by (1.7) exists ; no explicit form of this quantity is 
given in Vujanovic's papers. If it is assumed that ~ is continuously differentiable, it is clear 
that it does not exist; indeed, a function cannot be simultaneously equal to zero and g r o w  
with time and space. 
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3. When the heat flux is prescribed, or when radiation boundary conditions are applied, 
surface terms are missing in the expressions of Vujanovic's action integral. This is important 
because these additional terms must be used in the approximation direct methods. 
4. The theory has only been formulated for isotropic bodies. The extension to include aniso- 
tropy is not straightforward. 
5. Some variational techniques, like the Rayleigh-Ritz method are not applicable because 
at the limit 2-*0, it would yield infinite results. Only the partial integration method can be 
employed. 

Many other variational criteria have been proposed, each of them covering a particular field 
of continuum mechanics. Among them, let us mention Rosen's principle [23] for heat conduc- 
tion, Herivel's [-24] for ideal fluids flow and Rayleigh-Helmholtz's [-25] for isothermal viscous 
fluids in slow motion. 

Recently, one of the authors (G. L.) in collaboration with J. Lambermont presented a general 
variational principle for purely dissipative processes [26] as well as for fluids in motion [27]. 
The purpose of this paper is to apply this principle to some non-linear heat conduction prob- 
lems. 

In section 2, the expression of Lebon-Lambermont's criterion for heat conduction is derived. 
As an illustration, the temperature distribution in a semi-infinite body with thermal properties 
varying with the temperature is calculated. This is done by using the partial integration 
method. Two kinds of boundary conditions are considered : in section 3, the surface tempera- 
ture is prescribed; in section 4, the heat flux across the surface is imposed. 

2. Lebon-Lambermont's variational principle 

Before deriving the variational criterion, let us briefly recall some definitions. The internal 
energy of the body is, neglecting deformations, a function of the entropy only. Referring all 
the quantities to a unit volume, one has 

uv = uv(G). 

The Legendre transformation of uv with respect to the temperature is defined by 

u ~ - T G - f ~  (2.1) 

and is identical with the Helmholtz free energy. Its time derivative is 

f~ = - G J ' .  (2.2) 

The entropy production per unit volume due to heat conduction is given by 

0T-1 
a = J, ax-~-. ' (2.3) 

where J~ is the ith component of the heat flux vector J. Introducing the energy dissipation 
function 

= �89 Ta,  (2.4) 

one has, according to (2.3): 

1 J/ a T  (2.5) 
~9- 2 T gxi" 

For an anisotropic medium, (2,5) suggests the following phenomenolOgical relation 

J i -  Lij aT 
T a x j "  (2.6) 

The phenomenological coefficient Lij is connected with the heat conductivity coefficient by 

Lij = Tki~, (2.7) 
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where, in virtue of Onsager's reciprocal relations 

Lzj = Lji. (2.8) 

Substitution of (2.6) in (2.5) yields 

L o a T  aT  (2.9) 
~t = �89 T2 axi OXj" 

If the temperature is prescribed at the surface, the principle of Lebon-Lambermont is 
expressed by 

8 , I=c1  t (  ~ L d t d V  = O , (2.10) 
J t dv 

where the Lagrangian L is given by 

L = f ~ - o .  (2.i 1) 

The variation is taken with respect to the temperature T, the subscript t means that the time 
derivative of T must be kept fixed during variation. If L~a is depending on the temperature, it 
must also be frozen. Using (2.2), (2.7) and (2.9), L may be written as: 

L=-s f, l k r*arar ( ) (2.12) 2T 2 Ox i aXj ~ L T, , t, x i . 

An asterisk reminds one that the corresponding quantities are to be held constant during the 
variational procedure. 

The Euler-Lagrange equation associated with (2.10) is 

~L a aL 
0 

\ ax /  
i.e. 

Os~ ~*+k* T3 + t ,i+ k*'ar~ji)~xj~ = 0 .  (2.14) 
a T  axi axi Ox~ (2T  2 

At this stage of the calculations, the asterisks must be dropped. Making use of the Onsager 
relations and of the classical result 

d T  
- - ,  (2.15) dsv = c T 

(2.14) reduces to 

1 L&ar)  
- c ~ + ~  Oxi\ ' ~  = 0  (2.16) 

which is the equation for heat conduction in an anisotropic solid. 
Instead of imposing the temperature, consider that the heat flux is a prescribed function 

g (x, t) of space and time over a part A~ of the surface A and that a radiation type condition like 

S.  n = h ( T -  To) 

is ftpplied over the part Ar of A = As roAr; h is the heat transfer coefficient and T o the temperature 
of the surrounding medium. 

The functional I must then be modified as follows 
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gi is the i th component of the prescribed vector g, ni is the i th component of the unit normal 
pointing outwards. The conditions for I to be stationary are now the energy law (1.1) plus the 
boundary conditions 

0T 
- k i j  ~xj ni -= gini on Aj ,  (2.19) 

-kij ~ n i = h(T- To) on At. (2.20) 

3. Heat conduction in a semi-infinite solid with temperature prescribed at the boundary 

Consider an isotropic, homogeneous, semi-infinite solid bounded by the plane x = 0 and ex- 
tending to infinity in the direction of positive x. The solid is initially at the uniform tempera- 
ture To. 

At t = 0, the face x = 0 is suddenly brought to the temperature 2 To: 

T =  To for t = 0  and Vx, 
T = 2 T  O for Vt and x = 0 .  (3.1) 

The thermal conductivity and the heat capacity are supposed to be of the form 

k = ko (1 + e0), (3.2) 
c = Co (1 + flO), (3.3) 

with 

0 = T/T o ; (3.4) 

ko, Co, c~, fl are given constants. 
With the above expressions for k and c, the action integral I is given by 

I=  f~fx { -c~189 k~176 dxdt. (3.5) 

In order to obtain an approximate solution for the temperature distribution, we use the 
method of partial integration. 

Following Blot, we assume that the temperature distribution is parabolic: 

0 ( x , t ) = l  + 1 -  x < f ( t ) ,  

O(x, t)= 1 x >=f(t), (3.6) 

f(t) is an unknown function of time and may be interpreted physically as being the penetration 
depth. According to (3.1), one has 

f(0) = 0. (3.7) 

Substitute (3.6) in (3.5) and integrate with respect to x, the limits of integration being x = 0 and 
x =f, one gets 

I 2 fto[ff--~af2 (fl  (1~ f * l l f )  ( n  ~) (~ n 5 ) f )  = _ + ~ -  f * +  l n 2 - 5 +  

lco (1 f * 4 { n  
+ ~ / 2  f - - ~ , 2 -  1) (1 + 2a)--ff* ( (4  ~)(1 +8~)+ In 2(1--8~)3. 

- f ' 3 ( 4  (1 + 4 e ) -  In 2 (1 -4a ) )  +f3o~(6 In 2 - ~-  + 

+ 2o~f2f * (2 rc -7 -5  In 2 ) ~ ] d t =  ft L(f, t)dt (3.8) 
) J  3o 
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where ~c o = ko/co is the diffusivity. 
The Euler-Lagrange relation corresponding to the variational equation 6I = 0 is given by 

~L 
~-f = 0.  (3.9) 

It must be recalled that, while derivating L with respect to f, all the quantities with an asterisk 
are to be held fixed. When all the derivations are performed, the asterisks may be dropped and 
(3.9) yields: 

ff(0.0537 + 0.0666 fl) = tc (0.2643 + 0.4721 e). (3.10) 

This is a first order differential equation with respect to the time. With the initial condition 
(3.1), one obtains 

f =  7 [~ot] ~ (3.11) 

with 

= (  2(0.2643+0.4721 e)]~ 
/ 

The values of 7 corresponding to different values of k and c are reported in table 1. 

TABLE 1 

Values of 7 

CO 

c0( l+0)  

ko ko(l+�89 k0(l+0)  k0(1-�89 

3.14 4.32 5.24 1.03 

2.10 2.88 3.50 0.69 

The results obtained in the theory of Biot are also of the form (3.11). However, to compare 
our results with those of Biot, one has to assume that the initial dimensionless temperature 
is uniformly zero instead of one. This implies that in the expressions (3.2) to (3.6), 0 must be 
replaced by 1 + 0 (the upper bar indicates that the initial temperature has been chosen equal 
to zero). 

The corresponding values of y are given in table 2 and compared with Biot's ones. 

TABLE 2 

Values of ~ 

c•k k o ko(l+�89 ) ko(1-�89 

c o 3.14 3.70 2.434 
3.36 (Biot) 3.83 (Biot) 2.76 (Blot) 

c o (1 + 0) 2.82 
2.97 (Biot) 

In fig. 1, we have represented the approximate value of 0 versus the quantity ~ = x/2 0% t) ~ 
for different values of k and e. We have also plotted the corresponding results obtained by 
means of Biot's method; the exact solution for e and k constant has also been represented. It 
may be seen that our results differ slightly from Blot's and fit rather well the exact solution. 

For metals, the heat conductivity law (3.2), expressing k as a linear function of 0 is not very 
satisfactory. A more appropriate dependence is [28] : 
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6 

1.0_ 

. . . . .  EXACT SOLUTION 

. . . . . .  BLOT'S THEORY 

- -  PRESENT THEORY 

c--c o k = k  o 

c=__co(l+~] k--ko 

o o:'~ slo l.'s 2.0 

2  4zgro  
Figure 1. Internal temperature profile in a semi-infinite body with prescribed temperature at the boundary, 

k = --k~ (Eucken's law) . (3.12) 
0 

With this form for k, the functional I is given by: 

l =  ft f:,{ -(fiO+ln O)O*-�89176 /c~O \2) ~2t~x) ~ dxdt (3.13) 

wherein 0 is the only quant i ty  to be kept fixed. 
Substitute the trial function (3.6) in (~. 13) and integrate with respect to the space coordinate. 

The corresponding Euler-Lagrange equation yields 

0.1427 (3.14) 
f f =  ~c~ 0.0537+0.0666fl " 

The values of f for fl = 0 (constant heat capacity) and fl = 1 are respectively 

f = 2.31 [tc o t] ~ (fl = O) 

f =  1,54 [rCot] -~ (fl = 1) 
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By using Biot's method, one would find in the case fi = 0, 

f = 2.64 [tr 0 t] ~ . 

The above analysis may be easily extended to bodies with non-linear thermal properties. It 
would only result in more complicated algebraic operations. 

4. H e a t  conduction in a semi-inf'mite body with prescribed heat f lux at the surface 

The semi-infinite solid described in section 3 is heated at the surface x = 0 by a heat flux which 
is a given function of the time : 

J - - k a 0  = 9 ( t ) *  for x = 0 .  (4.1) 
0x 

The heat conductivity and the heat capacity are taken to be given by (3.2) and (3.3) and the 
initial temperature is taken equal to zero: 

0(x, 0) = 0 Vx. (4.2) 

In order to take the boundary condition (4.1) into account, the variational method of finding 
an approximate solution must be adapted. Here we employ the technique proposed by Lardner 
[14] and Rafalski and Zyszkowski [29]. 

We choose as trial function 

0 = qe  -(I=+1)2 (4.3) 

wherein, according to the above mentioned procedure, two parameters f and q are introduced. 
Both are unknown functions of the time but f ( t )  is the independent parameter to be calculated 
by means of the variational method while q(t) is treated as a given function not subject to 
variations; q(t) will be determined by the boundary condition (4.1) which is no part of the 
variational process. 

Note that q (t) is related with the temperature at the surface by 

q(t) = cO(O, t) , (4.4) 

with, according to (4.2), 

q(0) = 0.  (4.5) 

Inserting (4.3) in the expression (2.18) of the action integral results in 

+ 2 k o q f 2  ( f x  + 1) 2 e-(1""+ 1)2 (1 + c~q e-(s*-+ 17)} dxdt  
Co 

- f , Ige-(I=+ l)~+(I*x+ l)2lx=~ " (4.6) 

After integration with respect to the time, the above functional may be written in the form: 

= .ti L( f ,  t)dt . (4.7) I 

The Euler-Lagrange equation, ensuring that I is stationary, is expressed by 

0L 
- -  = 0 .  (4.8) 
U 

After performing the derivation with respect to f, we identify f *  and f *  with f and f respectively 
so that (4.8) gives: 

* For convenience, the non-dimensional temperature will be used. 
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k~~ 

- c) ~-  erfc 1 + q ~-  erfc 1 - - qfl �88 0 erfc x/2 

- q  e r f c x / 2 _  1 = 0 ,  (4.9) 

where erfc y is the complementary error function 

2 e_;2d( (4.10) erfc y = ~ 
Y 

By introducing the expression of the trial function (4.3) in the boundary law (4.1), one obtains 
the algebraic equation 

( eq l  2qf 
ko 1 + ~ - /  ~-- -- 9(0, (4.11) 

which, combined with (4.9) constitutes a set of two equations for the two unknowns q and f. 
Let us first consider solids with constant thermal properties (e = 0, fl = 0); (4.11) reduces then to 

f _  eo(t) (4.12)  
2koq " 

Elimination of f between (4.9) and (4.12) results in the first order differential equation 
= e2g 2 

q0--0.7024 q 2 ~ 0.6901 - -  (4.13) 
g koco 

If the heat flux is constant through the boundary (~=0), the solution of (4.13) is 

q =  1.17ge( t -~-~ ~ (4.14) 
koco/ " 

By dividing this result by e, one obtains the expression of the surface temperature, Lardner [ 14] 
has treated the same problem in the frame of Biot's theory; taking a parabolic profile for the 
spatial temperature distribution he gets 

0(0, t )=  1.12g . (4.15) 

Choosing a cubic profile, Vujanovic 1-17] finds 

0(0, t )=  1 , 1 2 8 g k k ~  / , (4.16) 

while by applying the integral method and a parabolic profile, Goodman [30] obtains 

( t~-~ 
0(0, t )=  1.2259 \ k ~ )  " 

In all cases, the agreement with the exact solution [1] 

0(0, t )=  1.1289 

is seen to be quite satisfactory. 
If it is assumed that g follows a power law of the form 

o = t "/2 (n >___ 0 ) ,  

(4.17) 

(4.20) 
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0 

0.4_ 

EXAC T SOLUT/ON 
VAR/AT/ONAL SOLUT/ON 

=0.1 

~= 0.01 

~ =  x 

Figure 2. Internal temperature distribution in a semi-infinite body with constant heat flux prescribed at the boundary. 

expression (4.13) becomes 
d q2 = e 2 n 

(�89 ~ koc~-o 0,6901. 

The solution of (4.21) is 
eA t~(n+ 1) 

q (koco) ~ 

where 

A = (  1,38 2 )~ " 
1 + 0,5959 

Introducing (4.22) in (4.3) and setting 
x 

- 2(Ko t ? '  

(4.21) 

(4.22) 

Journal of Engineering Math., VoL 8 (1974) 31~4  



Unsteady non-linear heat transfer problems 41 

one obtains the temperature profile inside the body: 

eAt~(.+l) exp_( ~ )2 
0-- (koco)  ~ A + 1 . (4.23) 

The exact solution is known to be 

r(kn+a) 
0 -  (koco) ~ (4t)-~"+~)i "+1 erfc~ ,  (4.24) 

where i" erfc ~ is defined by [1] 

i" erfc ~ = f~  i"-1 erfc ~d~.  

The approximate and exact solutions are compared in fig. 2 and 3 for n = 0 and n = 1 respec- 
tively. It is seen that the choice of the trial function (4.3) is less appropriate for n = 1 than for 
n=0 .  

011,,o (koCo)  
L' 

EXACT SOLUTION 

VARIATIONAL SOLUTION 008 

\ ~=o.1 

\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ \ \ \  

\,,, X\~\ 

o ds 

\ 

~.',, 

i i 

1 l.S 

Figure 3. Internal temperature distribution in a semi-infinite body with heat flux at the boundary proportional to 
the square root of the time. 
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Consider now a solid with constant conductivity but variable heat capacity of the form (3.2). 
If the heat flux is supposed constant, substitution of (4.12) in (4.9) leads to : 

e 2 g2 (4.25) 
q0 + 0.6444/3q 2 0 = 0.6901 ko c~" 

After integration and setting 

Q = q/e =- 0(0, t), (4.26) 

one gets 

Q2 Q3 02 
~ -  + 0.06444/~ ~-e = 0.6901 ~o~o t .  (4.27) 

The values of Q are plotted on fig. 4 in terms of z (=  02 t/ko Co) for/? = 1, 0.5, O, - 0 . 5  and - 1  
respectively. 

Finally we assume that the specific heat is constant but that the heat conductivity varies 
linearly with the temperature. For a donstant O, elimination o f f  between (4.9) and (4.12) yields 

9 z 
0.6901 = Q (~ (1 + c~Q) (1 + 1.7025 c~Q)/(1 + 0.4039 ~Q). (4.28) 

ko Co 

-1,0 

- 0 5  

fl-- 0 

0.5 

4.0. 

i 

20-  

2Z)_ 

1.0- 

I . . . .  o z 

Figure 4. Effect on varying the heat capacity on the surface temperature histary 

0 
s 
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o f 2' 3 4 ,~ 6 ? s 
Figure 5. Effect on varying the heat conductivity on the surface temperature history. 

10 Z- 

The solutions have been calculated for ~=  -0.25,  -0 .1 ,  0, 0.25, 0.5, 1 and are represented 
by fig. 5. 

5. Concluding remarks 

In all the cases where analytic results are available, it has been seen that the variational solution 
constitutes a good approximation of the true one. This justifies the use of variational methods 
in treating complicated problems, like those involving temperature-dependent thermal proper- 
ties, which cannot be solved directly. 

The choice of the selected variational principle is, to a certain extent, of sentimental nature. 
Besides, several principles may be used together to test the accuracy of the solution obtained. 
Indeed, if two or more principles give approximately the same result, it is reasonable to think 
that it is reliable. However, for certain classes of problems, some principles lead to heavier 
numerical calculations than others. It must also be kept in mind that some formulations like 
those of Biot and Vujanovic, are less general than those of Glansdorff-Prigogine and Lamber- 
mont-Lebon.  The former are more adapted to describe heat transfer and related situations, 
the latter embrace a larger field of macroscopic physics including chemical reactions, diffusion 
processes and fluid flows. Moreover, the very construction of Biot~s and Vujanovic's criteria 
imply that the partial integration method must be employed to the exclusion of any other 
technique like Rayleigh-Ritz's or the iteration method. 

In this paper, we have chosen very simple trial functions involving at the maximum two 
parameters. Moreover, all the computations have been performed with the help" of a mini- 
pocket computer. The values of the quantities c~ and/3 were chosen for illustrative purpose 
and are not necessarily representative of a particular material ; the object of this paper was 
not to solve a given practical problem but rather to show that our method may be of great use 
in solving non-linear heat transfer problems. 
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